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Oscillations of low-viscosity drops were studied in the microgravity environment of a 
Space shuttle flight. From the damped oscillation data, the inviscid frequency shift, due 
to nonlinearity, has been extracted using a central-averaging scheme. For the classical 
case of the oscillations of a free low-viscosity drop, it has been found that the frequency 
shift agrees well with the predictions of the inviscid nonlinear theory of Tsamopoulos 
& Brown (1983) for e < 0.3. But for the oscillations of a rotating low-viscosity drop, 
under acoustic levitation, the frequency shift is smaller, and the percentage of time 
spent in prolate displacement is significantly less than that for the classical case. 

1. Background 
Consider a free liquid drop of spherical radius R, density p ,  and surface tension g. 

In the inviscid linear limit (Rayleigh 1879; see also Lamb 1945), for an axisymmetric 
normal mode of oscillation, its surface is given by 

F(0, t)  = R[ 1 + e cos w t  Pn(8)], (1.1) 

where 8 is the polar angle from 0 to n, t is time, E is much less than 1 and represents 
the wave amplitude; n = 2,3,4,. . . , P, is a Legendre polynomial, and the angular 
resonant frequency w is given by 

0- 
w2 = -n(n- 1)(n+2). 
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More generally, each mode N can have 2n + 1 non-axisymmetric modes m, where rn = 
0, f 1, + 2, . . . , f N, with m = 0 corresponding to the axisymmetric mode in (1.1 j. Here, 
the non-axisymmetric modes are degenerate in the sense that they all have the same 
frequency, given in (1.2). 

If the kinematic viscosity v of the liquid is small, then the oscillation amplitude is 
damped in time like exp ( -At ) ,  where A is given by (Lamb 1945) 

(1.3) 
v 

A = ,(n-l)(2n+ 1). R 

Chandrasekhar (1961) showed that the normal mode of oscillation of a viscous free 
drop is a damped oscillation if o R 2 / v  is larger than a constant M ,  and is an aperiodic 
decay if it is smaller than M .  For the fundamental mode of oscillation (n = 2), the value 
of M is 3.6902. In our work, since we are primarily interested in seeing nonlinearity in 
drop oscillations, we have made viscous damping small by choosing v to be low enough 
such that o R 2 / v  is much larger than M .  
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Prosperetti (1974, 1980) considered the initial-value problem for the small-amplitude 
oscillation of a viscous drop. For a drop with a zero vorticity distribution, and with a 
static deformation along one of the axes at t = 0, the ensuing motion has three phases. 
In the initial phase, before vorticity becomes important, the oscillation frequency is 
given by 

(1.4) 

where w and h are given by (1.2) and (1.3), and the decay rate is A. If h/cd < 1 ,  the 
motion is oscillatory, but if A / w  > I ,  w' is imaginary and the oscillation is aperiodic, 
at least initially. After the initial phase, vorticity is generated by viscosity at the drop 
surface, where the tangential stress is required to be zero, and diffuses viscously into 
the drop. This intermediate non-equilibrium phase is associated with heightened 
viscous dissipation because of the generation and spreading of vorticity. When the 
vorticity distribution reaches equilibrium, the drop motion is in its final phase. The 
oscillation can then be described in general by the least-damped normal mode 
(Prosperetti 1977) given by Chandrasekhar (1961), which may or may not be periodic. 
In the low-viscosity limit, it is given approximately by (1.2) and (1.3}, which is periodic. 

Since after an initial adjustment, which covers the initial and intermediate phases, 
the drop oscillations can be described by least-damped normal modes, it is useful to 
estimate the time taken for the adjustment. The vorticity can penetrate to a depth of 
S - (v/w)1/2 from the drop surface if 6 < R, and the whole drop if S 2 R. The two cases 
are related to Chandrasekhar's criterion for w R 2 / v :  in the first case w R 2 / v  > 1 and the 
motion is damped oscillatory, and in the second case wR"v 6 1 and it is aperiodic. In 
the first case, the adjustment time is of the order of b / v ,  i.e. an oscillation period. In 
the second case, it is of the order of R2/v .  In our experiment with low-viscosity drops, 
we are only concerned with the first case. The initial adjustment is over after about one 
oscillation such that it is appropriate to consider least-damped normal modes in our 
data analysis. 

Tsamopoulos & Brown (1983) studied the nonlinear but inviscid oscillations of 
drops using a perturbation technique. For YE = 2, the shift Sf  due to nonlinearity in the 
oscillation frequency f (f= 0/2n) is given by 

w' = ( w 2  - A2)1/2 

Sf/ f = - g e 2 ,  (1.5) 

where C = 1.17037 (corrected value from Tsamopoulos 1989), such that the frequency 
decreases quadratically with wave amplitude. 

The frequency shift can be understood as follows. At large amplitudes, the motion 
of the drop from its extreme prolate shape to spherical, or vice versa, is governed by 
the high pressure at the curved poles. Similarly, the motion during the oblate part of 
the cycle is governed by the high pressure at the curved equator. However, as the poles 
cover a smaller neighbourhood than the equator, the restoring force for the prolate 
part of the cycle is weaker. This brings about an asymmetry in oscillation, with 
relatively more time spent in the prolate form than in the oblate. Moreover, around the 
prolate extremum, the drop is almost cigar-shaped and the rebound of the drop to a 
spherical shape is opposed and slowed by the strong action of surface tension at the 
equator, which takes on an almost cylindrical shape at large amplitude. The result of 
this is an increase in the period of oscillation, or a decrease in the frequency, due to 
nonlinearity. 

Since the drop oscillation has a linear resonance, the frequency shift should not be 
dependent on e near e = 0, which rules out a linear dependence of the frequency shift 
on e. Furthermore, assuming that the dependence on E is analytical, the decrease in 
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frequency should be proportional to an even power of E near t‘ = 0, because it should 
be independent of the sign o f t ,  which reflects the choice of the origin of time. Hence 
to the lowest order, for small 6, the frequency shift is proportional to tZ. 

Trinh & Wang (1982) experimentally studied the large-amplitude oscillations of 
quasi-neutrally buoyant drops of silicone oil and carbon tetrachloride levitated in 
distilled water. They reported that, with increasing oscillation amplitude, the frequency 
decreases and the prolate phase lasts longer than the oblate phase in an oscillation 
period. This latter aspect was confirmed in the calculations of Tsamopoulos & Brown 
(1983). 

Becker, Hiller & Kowalewski (1 99 1) studied the nonlinear oscillations of freely 
falling liquid drops, after pinching off from a nozzle in air, both experimentally and 
theoretically. Their numerical prediction of the inviscid frequency shift, due to 
nonlinearity, is close to the analytical result (1.5) of Tsamopoulos & Brown, and the 
numerical result of Durr & Siekmann (1987), fore up to 0.3. They found experimentally 
that the frequency shift decreases quadratically with the oscillation amplitude, as 
predicted theoretically, but at a rate somewhat larger than the theoretical value, and 
also with a variation for different drops. Because of the generation process of the 
drops, the initial drop shapes are necessarily complex, requiring Fourier analysis. The 
complications arising from having to handle many modes on the experimental side may 
have contributed to the difference between theory and experiment. In our experiments, 
the situation is simpler because a drop could oscillate in a single mode. More recently, 
Becker, Hiller & Kowalewski (1994) have included the effect of viscosity in their theory, 
and have found that viscosity has a large effect on mode coupling, which is the 
nonlinear interaction between two modes. 

Lundgren & Mansour (1988) included small viscosity in their calculation on drop 
oscillations, using the boundary-integral method, considering mostly higher modes and 
their interactions, which are beyond the scope of our work. 

Patzek et al. (1991) theoretically studied the nonlinear oscillations of inviscid drops 
for e up to about 0.8. The frequency shift shows reasonable agreement with that of 
Tsamopoulos & Brown (1983) for t up to about 0.3, but they found significant 
deviation from the parabolic dependence on E for larger E .  

Basaran (1992) also calculated drop oscillations including viscosity as an initial- 
value problem. A Reynolds number Re = (l /v)(c~R/p)”~ is defined, which is 
proportional to Chandrasekhar’s w R 2 / v .  The results show that for Re + 1, the drop 
undergoes most rapid changes during the first cycle, signifying the initial adjustment of 
the drop, in agreement with our earlier comments on Prosperetti’s work. After the first 
cycle, change continues but much more slowly, as the drop relaxes further into 
equilibrium. Hence the first cycle is not a typical cycle, but is transient, sensitive to the 
initial conditions, and more dissipative than other cycles. However, in Basardn’s work: 
emphasis has been placed on the first cycle. For example, the important comparison 
with the result (1.5) of Tsamopoulos & Brown, has been made using the first cycle. 

In our experiments, we have also studied the oscillations of a rotating drop. In the 
linear inviscid limit, for an axisymmetric oscillation about the rotation axis, the 
frequency shift from Rayleigh frequency (1.2) due to a rotation rate SZ is given by 
(Busse 1984) 

1 8’ n4 + 4n3 +n2  + 26n +48 
- = Br[ f 64n(n + 2) (2n - 1) (2n + 3) ’ 

where 8’ is the frequency shift due to rotation, and B, = p Q 2 D 3 / a  is the rotational 
Bond number in which D = 2R is the spherical diameter of the drop. The full theory 
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of Busse considers the inviscid oscillation of a liquid drop in an immiscible fluid, with 
the whole system rotating at a constant rate. It has been verified experimentally using 
a drop in an immiscible liquid (Annamalai, Trinh & Wang 1985). More recently, 
Patzek et al. (1995) calculated the nonlinear oscillations of two-dimensional rotating 
drops, finding some interesting patterns of non-axisymmetric running capillary waves. 

The damping coefficient of the axisymmetric oscillation of a rotating drop is given 
by (Lee, Lye11 & Wang 1985) 

(1.7) I- P2n(4n5 + 16n4 + 15n3 - 106n2 -21 In- 78 
48(2n + 1) (2n - 1) (2n + 3)  

& = A  l +  [ 
where /3 = 2St/o; o and h are given by (1.2) and (1 .3), respectively. The damping 
coefficient decreases with rotation rate for n = 2, but increases with rotation rate for 
lllgher n. Rotation deflects motion through the Coriolis force, thereby producing 
vorticity which enhances viscous dissipation. But near the drop surface, as the normal 
oscillatory motion is deflected by the Coriolis force, the fluid changes direction and 
moves along the surface. Since the surface is free from tangential stress for a liquid 
drop in air, the deflection directs the liquid into a relatively stress-free environment, 
and hence helps to reduce viscous dissipation. What rotation does to dissipation is the 
sum of these two opposite effects. Equation (1.7) suggests that the second effect is 
important only for n = 2, but is overpowered by the first effect for higher n. 

Since our experiments involved acoustic levitation with imposed flattening, it is also 
necessary to know the frequency shift due to acoustic flattening (Marston 1980). In the 
linear inviscid limit, for an axisymmetric n = 2 oscillation, the frequency shift from 
Rayleigh’s value (1.2) is (Suryanarayana & Bayazitoglu 199 1) 

%a/f = 2 0  Ba, (1.8) 

where Sf, is the frequency shift due to acoustic flattening, co = 0.08036, and B, is the 
acoustic Bond number given by B, = (DA2/ap ,  ct) [1+ 7(kD)2/20], in which p ,  and c, 
are respectively the density of and sound speed in air, A is the acoustic pressure 
amplitude, and k is the wavenumber of the sound wave. There has been no 
experimental verification of this theory. However, the validity of the model is suspect, 
because in the formulation the deformation of the drop is treated as a consequence of 
the balance between surface tension and acoustic flattening, whereas in the calculation 
of drop oscillations the restoring force comes only from the perturbation of the 
deformed surface, while the part due to the perturbation in the radiation pressure is 
missing. 

In the experiments to be described below, we are interested in observing nonlinearity 
in oscillations, therefore we want to work with low-viscosity drops. ‘Low viscosity’ 
means that the drop oscillation suffers from small decay in one period, i.e. (w /2x )  ( I /h )  
% 1. This is equivalent to Re & 1, using Basaran’s (1992) definition. 

2. Experimental procedure 
The experiments were performed in the Drop Physics Module (DPM) of the United 

States Microgravity Laboratory-1 (USML-1) onboard Space shuttle Columbia (STS- 
50) during its flight between June 25 and July 9, 1992, by Astronauts Eugene Trinh and 
Bonnie Dunbar. Briefly, the DPM is a triaxial acoustic chamber in which standing 
sound fields are established in the orthogonaI directions (x,y, z fields) for positioning 
and manipulating the liquid drops. The x- and y-fields are operated at the same 



Oscillations of liquid drops 5 

frequency. For a complete description of the experimental apparatus, the readers 
should refer to our earlier two papers (Wang et al. 1994a, b). 

To achieve high temporal resolution, the drop oscillations are recorded with high- 
speed film running at 200 or 400 frames per second. We have chosen for presentation 
those drops which satisfy the following criteria: (i) clean deployments, with no evidence 
of contamination, (ii) accurate estimation of drop volume, (iii) axisymmetric drop 
shape, both during levitation and during oscillations, through balanced x and y sound 
fields, (iv) sufficiently large oscillation amplitude (c 2 0.3), and (v) stable levitation 
prior to and during oscillations. ‘Stable levitation’ here means that the drop is 
positioned at the centre of the chamber with minimal translational oscillations in the 
acoustic potential well, and more importantly, with no uncontrolled rotation, which 
happened to be predominantly along the y-axis. 

We are interested in the n = 2 free-decay oscillation of a drop after its stable levitation. 
This was achieved using two different approaches. 

In the first approach, the drop was flattened along the z-axis by raising the z-field 
relative to the other two fields (Marston 1980). Stable levitation was attained when the 
aspect ratio, i.e. the ratio of the equatorial diameter to polar diameter, was greater than 
about 1.5. On the other hand, given the drop size relative to the wavelength of the z- 
wave, the aspect ratio should not be larger than about 3 ,  or the drop will disintegrate 
(Anilkumar, Lee & Wang 1993 ; Lee, Anilkumar & Wang 1994). The drop was then set 
into a free oscillation by suddenly turning off all acoustic fields, thereby freeing the 
drop of all forces and allowing it to regain its spherical shape. It is important that the 
recovery through viscous relaxation could occur on a time scale shorter than that for 
the drop to drift out of the window view, as levitation was no longer in effect. This 
required that the viscosity be relatively high (- 10 cS). 

In the second approach, the drop was gyrostabilized through an imposed rotation 
along the z-axis. It is noted that, in practice, achieving this rotation always requires a 
finite flattening of the drop along the z-axis. The rotation rate D scaled by the n = 2 
Rayleigh frequency w in (1.2), denoted by a*, turned out to have to be greater than 0.3 
for this purpose. But D* cannot be as large 0.56 for that would lead to the n = 2 
rotational bifurcation of the drop (Brown & Scriven 1980). The working value of D* 
was about 0.4. Oscillations of the drop were started by using an imposed z-field, which 
was the third harmonic of the original z-wave, modulated in amplitude at the n = 2 
oscillation frequency of the drop (Marston 1980). A free-decay oscillation of a rotating 
drop ensured after the modulated field was turned off, while the original levitation 
fields were still on, keeping the drop in position. Unlike the first approach, this 
experiment is not constrained by viscosity, and can be used for low-viscosity drops 
(1-2cS). The maximum oscillation amplitude was dictated by the limits of the 
modulated z-drive. 

Using the selection criteria listed at the beginning of this Section, we ended up with 
two drops, one from each approach, oscillating in the free-decay modes. The one from 
the first approach was truly free, but that from the second approach was a rotating 
drop, and was subjected to a little additional acoustic flattening at the poles. For the 
second drop, there was also the small acoustic levitation force, but such a force plays 
a negligible role in affecting the drop shape or oscillations. A free-decay oscillation 
lasted for only a short time, such that any temperature variation occurring in the 
chamber during the process was negligible. 
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3. Data analysis 
The data analysis was conducted with a high-resolution video converted from high- 

speed film. 
In observing a drop shape oscillation, it is noted that the drop does not stay still but 

gently translates in the acoustic potential well, or in the case in which all acoustics is 
turned off, slowly drifts toward the walls. Hence instead of measuring the absolute 
dimensions of the drop, it is more convenient to characterize the shape of a drop at any 
time by the ratio of the height to the width or vice versa. Thus the oscillation process 
is described by a dimensionless ratio versus time. 

For the initially flattened drop 1, the ratio chosen is width to height W/L, where W 
is the equatorial diameter and L is the polar diameter, because it reflects the drop initial 
conditions better. The oblate extrema, especially at higher amplitudes, are much 
sharper than the prolate ones, thereby providing better frequency resolution. Since the 
drop is not concave at the poles to begin with, it could never be concave in an 
oscillation. The wave amplitude E has been evaluated from the W/L data not by (1. I), 
but by the more accurate drop shape with a nonlinear correction of O ( 2 )  from 
Tsamopoulos & Brown (1983). 

For the rotating drop 2 the ratio is chosen to be height to width (L/  W ) ,  because the 
prolate extremum shape is well defined, but the oblate extremum shape can be actually 
concave at the poles. Approximating the drop as spheroidal and basing on (1. l), the 
wave amplitude is modelled as E = 2{[L/ W- l)/(L/ W+ 2)Imaz - [L/ W-  1)/ 
(L/  W+ 2)Ir}, where the subscript ‘max’means evaluated when thedrop isinits extremum 
prolate shape, and ‘ r ’  means evaluated when the drop is in static rotation. 

While the oscillation frequency depends on the wave amplitude due to nonlinearity, 
the wave amplitude decays in time. If the decay of the amplitude is noticeable within 
one cycle, then the value of the amplitude to be used for evaluating the frequency needs 
to be clarified. In this context, before proceeding with the frequency shift analysis, one 
needs to explain how to define the frequency. We have used the following approach. 

First, the curve ( W / L  or L/ W versus t )  is converted into an array of 6 versus t ,  with 
E defined at the peaks of the original curve in terms of the ratio. Consider any three 
consecutive peaks A, B, and C of the curve. At the central peak B in particular, using 
the defined E ,  we can apply (1.5) to evaluate the theoretical nonlinear frequency shift. 
The actual frequency can be defined in a central scheme as 2/T,,, where T,, is the time 
interval between peak A and peak C. The frequency shift from the data is this 
frequency minusf, which is also experimentally determined as the asymptotic limit of 
this frequency when amplitude becomes very small, and the peaks are uniformly 
spaced. The shift, scaled withf, is compared with the prediction of ( IS) .  

Alternatively, the frequency at peak B can be defined ‘forwardly’ as l /TBc, where 
TBC is the time interval between peak B and peak C, or ‘backwardly’ as l/TAB, where 
TAB is the time interval between peak A and peak B. But these inevitably will be biased 
by viscosity, because the amplitude decays in the forward direction and grows in the 
backward direction. However, within one cycle, at large Re, the change of amplitude 
with time is approximately linear and is inversely proportional to Re. Therefore the 
central averaging we have described above cancels the time, and thus viscosity, 
dependence. In other words, what comes out of our analysis will be an inviscid result, 
although drop we are working with is in fact a low-viscosity drop. 

Basaran (1992) found that the nonlinear frequency shift has a dependence on Re 
even at relatively high Re. In view of our argument above, and his emphasis on the first 
cycle, the claim probably arose from his choice of defining the frequency forwardly. We 
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believe that he could have recovered thc inviscid result of Tsamopoulos & Brown if he 
had used central averaging and avoided the first cycle. The question is: given a damped 
oscillation curve of experimental or numerical origin what is the right way to extract 
the frequency? Of course, one can always consider this as a matter of definitions. But 
at large Re, at least for the purpose of comparing with an inviscid theory, central 
averaging seems to be more appropriate. However, when Re is low, the frequency shift 
should exhibit a real dependence on Re no matter how we define it. 

For drop 1, we also evaluate the percentage of time that the drop spends in oblate 
form. The percentage assigned to a peak of the W/L versus time curve is determined 
as the percentage of time the curve is above 1 between the adjacent minima on both 
sides of the peak. 

For analysing the oscillation of the rotating second drop we have a complication in 
that the drop was also inevitably flattened by the sound wave. We first examine the 
data at large time, which means the linear limit. In this limit, the frequencyf' does not 
depend on the wave amplitude. The frequency shift 8' due to rotation and flattening 
is the difference between ,f' and f (I  .2). Then (f'/f is compared with the sum of the 
contributions from the corresponding theories (1.6) and (1.8). 

Next we use this as an opportunity for testing the effect of nonlinearity on the 
frequency shift, regardless of the outcome of the preceding test. To do this, for any 
three consecutive peaks A, B and C, the actual frequencyf, at B is 2 divided by the time 
interval between A and C. The actual nonlinear frequency shift at B is given by Sf= 
f,- f'. Then Sf/fis compared with the prediction of (1.5). Of course we do not expect 
an agreement, but we shall see whether we can make some observations about it. 

For the second drop which is flattened by rotation and acoustic stress, we define a 
'prolate displacement' as that part of the oscillation cycle where L/ Wis greater than 
the equilibrium value, and evaluate the percentage of time that the drop spends in 
prolate displacement versus 6 .  The percentage assigned to a peak of the L/ W versus 
time curve is determined as the percentage of time the curve is above the equilibrium 
value between the adjacent minima on both sides of the peak. 

4. Results and discussion 
The oscillations are followed until 6 decreases to about 0.1, below which the 

resolutions for 6 ad &fare poor. Owing to the high temporal and spatial resolution of 
the drop imaging, the measurement errors are less than 0.5 Oh for frequency and about 
0.5 % for linear dimensions. 

The first drop, which is initially flattened, is a nominal 65/35 glycerin/water drop of 
volume of 4.3 k 0.1 cm3 with a viscosity of about 12.2 CS at 25 "C. The other measured 
properties of the drop liquid are listed in table 1. The initial flattening aspect ratio 
( W / L )  is about 1.72. The free-decay oscillation takes place at 31.7 "C. The value of Re 
during free decay is about 80. The free decay of the oscillations was studied with high- 
speed film recorded at 400 frames per second. 

The measured frequency after the amplitude has become small is 3.26 Hz, comparing 
well with Rayleigh's value from (1.2), evaluated at the free-decay temperature by 
applying a correction to the surface tension measured at 25 "C at - 0.16 dyn cm-I O C - ' .  

The results for the first drop are presented in figures 1-4 (the error bars, whenever 
bigger than the plot symbols, have been typically indicated in the figures). In figure 1, 
the ratio W / L  (equatorial to polar diameter) is plotted versus time. In figure 2, the 
amplitude 6 evaluated at successive peaks is plotted versus time, showing an 
exponential decay. The decay time 7 (the inverse of the decay rate A) is about 2.05 s, 
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0.5 -! I I I I I I 

0 400 800 1200 

FIGURE 1. Free-decay oscillation of the initially flattened drop (drop 1) : W / L  versus time. 

Time (1/400 s) 

0 0.5 1 .o 1.5 2.0 2.5 

Time (s) 
FIGURE 2. Decay of wave amplitude c in time (drop 1). The dotted curve is a fitted exponential curve, 
with a decay time of 2.05 5. The amplitude E has been evaluated from W/L,  using the drop shape with 
a nonlinear correction of O(2) from Tsamopoulos & Brown (1983). The time origin corresponds to 
the first oblate extremum following the release of drop flattening. 

p (gm cm ') cr (dyn cm I )  

Drop I.' (cSt) @ 25°C @ 25 "C 

(1) Glycerine/water (65/3S) 12.2 * 0.1 1.168 6 4 i  1 
@ 2s "C 
9.2f0.1 - __ 

@ 31.7"C 
(2 )  Silicone oil (DC 200 series) 2.10f0.05 0.872 18.8 f 0 . 2  

@ 25 "C 
TABLE 1. Properties of the drop liquids used in the experiments. (T was measured from the leftover 

flight fluids and v and p from retained samples of the flight fluids. 
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0 0.1 0.2 0.3 

Amplitude, e 

FIGURE 3. Frequency shift versus amplitude E (drop 1). The dotted curve is from (1.5) of 
Tsamopoulos & Brown (1983). 

I I I I I I 

0 0.1 0.2 0.3 

Amplitude, 6 
FIGURE 4. The percentage of time spent in oblate form versus amplitude E (drop 1). The dotted 

line is from the theory of Tsamopoulos & Brown (1983). 

agreeing well with Lamb's value from (1.3) of about 2.2 s. In figure 3, the nonlinear 
frequency shift is plotted versus E, in good comparison with the prediction of 
Tsamopoulos & Brown (1983). In figure 4, the percentage of time spent in oblate form 
is plotted versus oscillation amplitude E ,  also in good agreement with their prediction. 

The second drop, which is oscillating while rotating and is a little flattened by the 
levitation field, is a silicone oil drop (DC 200 series) of volume 3.35 -t 0.06 cm3 and 
viscosity of 2.10f0.05 cS at 25 "C. The other measured properties of the drop are 
listed in table 1. The value of Re is about 210. The equilibrium aspect ratio L/ W(po1ar 
to equatorial diameter), measured when the oscillations have completely stopped, is 
0.77. The drop rotates at 0.91 r.p.s. and this results in an aspect ratio of about 0.85 
(Brown & Scriven 1980). The acoustic flattening, which is the difference between the 
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0.1 ! I 1 , I , 
0 400 800 1200 1600 

Time (1/200 s) 
FIGURE 5. Free-decay oscillation of a rotating drop with some acoustic flattening (drop 2): 

L/ W versus time. 

0 2 4 6 8 

Time (s) 
FIGURE 6. Decay of wave amplitude E in time (drop 2) .  The dotted curve is an exponential curve, with 
a decay time of 8.2 s, from Lamb (1945). The amplitude E is evaluated from L / W  using (l , l) ,  after 
subtracting the equilibrium shape. 

total aspect ratio while the drop is not oscillating and the aspect ratio due to rotation 
alone, is thereby about 8 % .  The free-decay oscillation occurred at 25.6 "C and was 
studied with high-speed film recorded at 200 frames per second. 

Figure 5 is a plot of the ratio L/ Wversus time for the second drop ('A' in the figure 
denotes the region where the oblate extremum shape is concave at the poles). The 
measured frequency shift Sj" from the Rayleigh frequency at large time, when 
oscillation is linear, is about 8 %. The predicted frequency shift due to rotation alone 
(equation (1.6)) is about 14%. If it is assumed that the frequency shifts due to rotation 
and acoustic flattening are simply additive, then it appears that the frequency shift due 
to additional acoustic flattening is negative, contradicting the trend predicted by 
Suryanarayana & Bayazitoglu (1991). Figure 6 shows the exponential decay of 
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0 0.1 0.2 0.3 

Amplitude, e 

FIGURE 7. Frequency shift versus amplitude E (drop 2). The dotted curve is from (1.5) of 
Tsamopoulos & Brown (1983) for a spherical drop. 

amplitude E in time. The decay time is shorter than the 8.2 s predicted by Lamb from 
(1.3) for a spherical non-rotating drop. In contrast, according to (1.7). the n = 2 decay 
time for a rotating drop should be longer than that from (1.3). It is not clear what role 
acoustic flattening may play in changing the dissipation rate. 

In figure 7, the frequency shift due to nonlinearity is plotted versus amplitude E for 
the second drop. It is seen that the dependence is weaker than that predicted by 
Tsamopoulos & Brown (I 983) for spherical drops. As discussed in 5 1 ,  for a spherical 
drop, the nonlinear frequency shift is mainly a consequence of the relatively slower 
motion of the drop, when it is in the prolate phase of an oscillation. For the second 
drop under consideration, both rotation and acoustic flattening suppress the prolate 
part of its oscillation, thereby reducing the main cause of the nonlinear frequency shift. 

According to figure 5, the equilibrium value for L/ Wis 0.77. The explanation for the 
weaker nonlinearity for the second drop is corroborated by figure 8, where the 
percentage of time spent in prolate displacement is plotted. First it is noted that the 
equilibrium shape of the drop corresponds to an E of about 0.17. This means that the 
drop can attain a true prolate shape, during an oscillation only when E is greater than 
0.17. Accordingly, the data in figure 8 have been demarcated into two regions: region 
I corresponding to larger amplitudes ( F  2 0.17) where the oscillations are truly 
oblate-prolate, and region I1 corresponding to smaller amplitudes (0 < t. < 0.17), 
where the oscillations are oblate-oblate. At the demarcation point E = 0.17 between 
regions I and 11, the drop spends the same length of time in prolate and oblate shapes 
within a cycle. On comparing the data in region I with theory it is seen that the 
oscillations of this drop, which is flattened through rotation and acoustic stress, show 
less bias toward the prolate shape. The data at smaller amplitudes (region 11) show that 
the drop spends less than 50 % of the time in the prolate half of a cycle when 6 is below 
0.17. It is a little surprising that the percentage of time decreases with decreasing E more 
rapidly than that in region I, because we expect the curve to turn up back to 50% as 
c approaches zero. This has also been previously observed by Trinh & Wang (1982), 
in their experiments on drop oscillations in an immiscible levitator. 

For both drops, the oscillation curves look very much like damped sinusoidal 
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FIGURE 8. The percentage of time spent in prolate displacement versus the amplitude e (drop 2 ) .  
The dotted line is from Tsamopoulos & Brown (1983) for a spherical drop. 

functions. It is unlikely that a detailed fast Fourier transform would reveal any 
additional information like the presence of non-axisymmetric modes and the 
occurrence of mode coupling. Since the oscillations of the free drops decayed to low 
amplitudes quickly, mode coupling, if there was any, did not have a chance to appear. 

5 .  Conclusions 
Oscillations of low-viscosity drops were studied in the microgravity environment of 

a Space shuttle flight. From the damped oscillation data, the inviscid frequency shift, 
due to nonlinearity, was extracted using a central-averaging scheme. In the context of 
a free low-viscosity drop, it has been found that the frequency shift agrees well with the 
predictions of the classical inviscid nonlinear theory of Tsamopoulos & Brown (1983), 
in the range of experimental amplitudes (8 < 0.3). However, in the context of a rotating 
low-viscosity drop, under acoustic levitation, it has been found that the frequency shift 
is smaller, and the percentage of time spent in prolate displacement is significantly less 
than that for the classical case. 

The central-averaging scheme employed in our data analysis has effectively 
eliminated the role of viscosity in nonlinear frequency shift. According to Basaran 
(1992), viscosity influences the resonance frequency in two opposite ways. It reduces 
the frequency by slowing down the fluid motion, which is a linear effect. At large Re, 
from (1.4), the effect is inversely proportional to Re2 and is negligible. Viscosity also 
reduces the amplitude and hence increases the frequency by reducing the negative 
nonlinear shift. But this effect of viscosity is implicit, because the frequency shift is still 
given by (1.5) in terms of the amplitude. This implicit effect, given by the decay of the 
amplitude with time, is inversely proportional to Re at large Re, and is eliminated 
during the evaluation of the frequency shift by central averaging. 

The question remains as to what large Re means in the central-averaging scheme. 
The oscillation amplitude decays by a factor of exp (- 27ch/w) in one cycle. In order 
that the frequency shift can be considered as inviscid, the decay has to be approximately 
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linear within one cycle, such that central averaging is applicable. Therefore we need 
2nh/w < 1. From (1.2) and (1.3), it means 

Re for the two drops we worked with is 80 and 210, respectively. 

The analysis described in this paper was carried out at the Center for Microgravity 
Research and Applications at Vanderbilt University, under contract with the National 
Aeronautics and Space Administration. The authors wish to express their gratitude to 
Dr Eugene Trinh, and Dr Bonnie Dunbar for their tireless efforts in conducting the 
experiments during the USML-1 mission. The authors are also indebted to Mr Arvid 
Croonquist, and Dr Mark Lee for their selfless contribution to the success of these 
experiments . 
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